Seletividade e eficácia dos herbicidas Kapina® e Kapina Plus® no controle de tiririca em gramas bermuda e esmeralda¹

Selectivity and effectiveness of Kapina® and Kapina Plus® herbicides controlling *Cyperus* sp. in *Zoysia japonica* and *Cynodon dactylon* grasses

Cleber Daniel de Goes Maciel²; Juliano Guilherme Sapia³; Philipp Naoki Yokoyama Kondo³; Welinton Lucas S. Benites³; Jhonny Anderson Antunes Pereira⁴; Vanice Ester Wesz. Birck⁴; Alexon Ferreira da Silva⁴

Resumo - O uso de herbicidas em gramados é uma técnica promissora, desde que atendida precauções quanto à seletividade. Com objetivo de avaliar a seletividade e eficácia dos herbicidas Kapina[®] e Kapina Plus[®] no controle de tiririca (*Cyperus flavus* e *Cyperus rotundus*) em gramas Bermuda (*Zoysia japonica*) e Esmeralda (*Cynodon dactylon*), dois experimentos foram conduzidos em casa-de-vegetação. As aplicações foram realizadas com pulverizador pressurizado a CO₂, utilizando taxa de aplicação de 250 L ha⁻¹. Kapina[®] e Kapina Plus[®], a partir de 750 mL ha⁻¹, apresentaram excelente controle de *C. flavus* e *C. rotundus*; assim como seletividade satisfatória para as gramas esmeralda e bermudas. Kapina Plus[®], a partir de 750,0 mL ha⁻¹, além da ação herbicida, também apresentou viabilidade como regulador do crescimento e desenvolvimento vegetativo da grama esmeralda.

Palavras-chaves: Imazapyr, Zoysia japonica, Cynodon dactylon, Cyperus sp.

Abstract - The use of herbicides in turf grasses is a promising technique, since required precautions regarding the selectivity. In order to evaluate the selectivity and effectiveness of Kapina[®] and Kapina Plus[®] herbicides in controlling *Cyperus flavus* and *Cyperus rotundus* in *Zoysia japonica* and *Cynodon dactylon*, two experiments were conducted in green house conditions. Applications were performed with a CO₂ pressurized spray, using application fee of 250 L ha⁻¹. Kapina[®] e Kapina Plus[®] herbicides, from 750 mL ha⁻¹, showed excellent control of *C. flavus* and *C. rotundus*; as well as satisfactory selectivity for *Zoysia japonica* and *Cynodon dactylon* grasses. Kapina Plus[®], from 750.0 mL ha⁻¹, besides herbicide action, also presented viability as regulator of vegetative and development growth of Emerald grass.

Keywords: Imazapyr, *Zoysia japonica*, *Cynodon dactylon*, *Cyperus* sp.

⁴ Representantes da Rawell Química Ltda, Rodovia MT 344 - Km 03 - CEP 78840-000 - Campo Verde-MT.

¹ Recebido para publicação em 20/12/2012 e aceito em 25/02/2013.

² Professor da Universidade Estadual do Centro Oeste (UNICENTRO), Campus CEDETEG, Curso de Agronomia, R. Simeão Varela de Sá, 03, CEP.: 85040-080, Guarapuava, PR. Email: cmaciel@unicentro.br (*autor para correspondência).

³ Acadêmicos de Agronomia da Universidade Estadual de Maringá, Campus Regional de Umuarama, Estrada da Paca, s/n°, CP 65, 87501-970, Umuarama-PR.

Introdução

Na implantação e manutenção de gramados, o controle de plantas daninhas é um dos maiores problemas para consumidores ou profissionais. Segundo McElroy & Martins (2013), a presença de qualquer planta daninha pode diminuir sua qualidade estética e usabilidade em gramados, sendo que o uso de herbicidas é a única maneira de controlá-las completamente nessas áreas. Portanto, o uso de herbicidas é uma técnica fundamental no sucesso de qualquer programa de manejo de plantas daninhas em gramados, desde que atendida precauções quanto à seletividade. O uso de herbicida em gramados esportivos e ornamentais é uma técnica que começa a ser difundida no Brasil. No caso de jardins residenciais, a maioria das informações de manejo são experiências sem respaldo científico (Maciel, 2010).

Kaufmann (1986) relatou que os principais fatores limitantes dos herbicidas é a estreita faixa de sua tolerância e os cuidados com a sua aplicação, pois doses acima do limite podem causar níveis variados fitointoxicação ou, até mesmo, à morte do gramado. Deuber (1997) e Christoffoleti & Aranda (2001), mencionam a escassez de estudos no Brasil sobre o manejo de plantas daninhas em gramados e da seletividade de herbicidas. Em complemento, Maciel (2010), relatou que a maioria das informações que circulam no país são frutos de experiências de profissionais do setor e/ou adaptações de publicações americanas, divulgadas informalmente e sem respaldo científico sobre seletividade/eficácia, como tecnologias de aplicação e riscos toxicológicos para o aplicador e ambiente.

Através de levantamento florístico em grama-batatais (*Paspalum notatum* Flügge) e esmeralda (*Zoysia japonica* Steud.), Maciel et al. (2008; 2010) relataram que espécies do gênero Cyperaceae se destacam com elevada frequência e índices de valor de importância,

sendo importante sua consideração para o direcionamento do manejo de plantas daninhas.

O objetivo deste trabalho foi avaliar a seletividade e eficácia das formulações dos herbicidas Kapina[®] e Kapina Plus[®] no controle de tiririca (*Cyperus flavus* e *Cyperus rotundus*) em gramas bermuda e esmeralda.

Material e Métodos

Dois experimentos foram conduzidos em casa-de-vegetação pertencente à Fazenda do Campus Regional de Umuarama/PR da Estadual Maringá Universidade de (CAU/UEM). localizada latitude em 23°47'28,4" Sul e longitude 53°15'24,0" Oeste, em altitude média de 379 m. As unidades experimentais foram vasos plásticos com 8,0 kg de solo LATOSSOLO VERMELHO Distrófico típico, de textura média-arenosa (25% de argila, 69% de areia e 6% de silte). O delineamento experimental utilizado foi o inteiramente casualizado, com 12 tratamentos e 4 repetições para as duas cultivares de grama no experimento 1 e 9 tratamentos e 4 repetições no experimento 2. No experimento 1, mudas das gramas esmeralda (Z. japonica) e bermuda (C. dactylon) foram plantadas 60 dias antes da aplicação dos tratamentos herbicidas, utilizando-se dois "plugs" de grama por vaso. No momento das aplicações as unidades experimentais apresentava-se com infestação natural de tiririca da espécie C. flavus, constituída por média de 4 a 7 plantas por vaso, em estádio de início de florescimento. No experimento 2, apenas tubérculos de C. rotundus foram transplantados a 5,0 cm de profundidade, 28 dias antes da aplicação dos herbicidas, originando infestação de 18 a 25 plantas por vaso, em estádio fenológico de 7 a 8 folhas no momento da aplicação.

As aplicações foram, respectivamente, realizadas aos 08/01/2011 e 11/02/2011 nos exp. 1 e 2, utilizando-se um pulverizador costal pressurizado a CO₂, equipado com barra de duas pontas DG 110.02, espaçadas entre si em 0,5 m e a 0,5 m de altura da grama e/ou plantas

daninhas, e constituindo taxa de aplicação de 250 L ha⁻¹. No início e final da aplicação dos tratamentos do experimento 1, realizada no período da manhã, no horário de 9h45m a 10h10m, quando a média da umidade relativa do ar, temperatura e velocidade dos ventos foram, respectivamente, de 70,6 a 68,5%; 27,3 a 27,9 °C e com rajadas de ventos de 0,3 a 0,5 km h⁻¹. No experimento 2, a aplicação foi realizada no período d tarde, das 16:15 a 16:35 horas, onde a média da umidade relativa do ar, temperatura e velocidade dos ventos foram, respectivamente, de 67,3 a 68,0%; 27,8 a 27,3 °C e ventos de 0,0 a 0,0 km h⁻¹.

As características avaliadas foram: porcentagem de controle da tiririca e/ou fitointoxicação das gramas por meio escala de notas visuais (SBCPD, 1995), onde 0% correspondeu à ausência de injúrias e 100% à morte das plantas aos 7, 14, 21, 28, 35 e 49 DAA (dias após aplicação); controle da tiririca aos 7, 14 e 28 DAA para o experimento 2; altura das gramas (cm) e matéria seca da parte aérea (g por vaso) aos 42 DAA para o experimento 1. A determinação da altura das gramas foi realizada com auxílio de régua graduada, medindo-se a distância vertical entre a superfície do solo e as pontas das folhas em inclinação natural. utilizando-se três amostragens aleatórias por vaso. Para matéria seca da parte aérea, a matéria verde das gramas e plantas daninhas na superfície das unidades experimentais foi coleta e acondicionada em sacos de papel, com posterior secagem em estufa de circulação forçada de ar, por período de 72 horas a 65 °C.

Os dados foram submetidos à análise de variância pelo teste F e suas médias comparadas pelo teste LSD a 5% de probabilidade.

Resultados e Discussão

Para as duas gramas estudadas observou-se baixo nível de fitointoxicação causada pelo Kapina[®] ($\leq 5,0\%$) e Kapina Plus[®] ($\leq 8,5\%$), e suas respectivas dosagens, em

todas as épocas de avaliação do experimento 1 (Tabelas 1 e 2). De forma geral, os sintomas visuais persistiram por maior período sobre a grama esmeralda, caracterizando-se por maior sensibilidade em relação à grama bermudas, principalmente quando utilizado o Kapina Plus[®]. Nesse mesmo sentido, pôde-se constatar no experimento 1 que a seletividade das formulações de Kapina[®] e Kapina Plus[®], na dosagem de 750 mL pc ha⁻¹, não diferiram significativamente do herbicida Sempra[®] (150 g ha⁻¹), a partir dos 7 e/ou 14 DAA, assim foram significativamente também superiores ao Contain[®] (800 e 1600 g ha⁻¹) e Plateau[®] (140 g ha⁻¹), respectivamente, a partir de 14 e 21 DAA para as duas espécies de grama. Cavalieri et al. (2010a,b) relataram efeito pronunciado na redução de porte e fitointoxicação aos 40 e 76 DAA para o herbicida Plateau[®], assim como superiores aos encontrados no trabalho, quando utilizado em grama esmeralda na presença ou ausência de adjuvante. De forma semelhante, Christoffoleti & Aranda (2001) e Costa et al. (2010) também mencionaram alta seletividade do Sempra[®] (150 g pc ha⁻¹) para aplicação em grama esmeralda.

Para a grama esmeralda, as formulações de Kapina[®] e Kapina Plus[®] proporcionaram aos 42 DAA redução superior a 26,1% e 34,8%, em relação à altura, e de 19,9% e 58,1%, em relação à matéria seca da parte aérea, respectivamente (Tabela 1). Esses resultados evidenciaram que além do controle das plantas daninhas, existe a possibilidade principalmente para o Kapina Plus® de ser utilizado como regulador do crescimento da grama esmeralda, visando à redução do número Sempra[®] também cortes. significativamente a altura (34,4%) e a produção de matéria seca da parte aérea (32,3%) da grama esmeralda, corroborando com os resultados obtidos por COSTA et al. (2010). Para a grama bermuda, a redução da altura e matéria seca da parte aérea foram menos expressivas para Kapina[®] e Kapina

Plus[®], o que associado à baixa fitointoxicação, confirmam a maior tolerância e/ou seletividade (Tabela 2).

De forma geral, apesar dos sintomas visuais serem considerados aceitáveis, ainda

assim foram mais persistentes para o Kapina Plus[®], principalmente para a grama esmeralda. Na Figura 1a é possível verificar os efeitos fitotóxicos, e supressão do crescimento para as gramas esmeralda e bermuda aos 28 DAA.

Tabela 1. Fitointoxicação, altura e matéria seca da parte aérea da grama esmeralda (*Z. japonica*), e porcentagens de redução (valores de % entre parênteses) em relação à testemunha (Exp. 1). Umuarama-PR, 2011.

	T	Fitointoxicação (%)					Desenvolvimento vegetativo		
Tratamentos	mL ou g pc ha ⁻¹	7	14	28	35	49	A14 ()	M. Seca	
	па	DAA	DAA	DAA	DAA	DAA	Altura (cm)	(g vaso ⁻¹)	
1. Kapina ^{®1/}	750	0,0 d	0,0 d	0,0 e	0,0 e	0,0 c	8,5 (26,1) b	27,5 (19,9) b	
2. Kapina®	1500	1,5 c	3,5 c	0,0 e	0,0 e	0,0 c	7,8 (32,6) bc	26,2 (23,5) b	
3. Kapina®	2250	3,0 b	4,0 c	0,0 e	0,0 e	0,0 c	6,8 (41,3) d	19,2 (43,9) cd	
4. Kapina Plus ^{®1/}	750	1,5 c	3,8 c	3,5 de	2,3 de	0,0 c	7,5 (34,8) cd	14,4 (58,1) de	
5. Kapina Plus®	1500	3,0 b	3,5 c	3,0 cd	4,0 d	0,0 c	6,8 (41,3) d	14,0 (59,1) e	
6. Kapina Plus [®]	2250	3,0 b	4,5 c	6,5 bc	4,5 cd	0,0 c	5,5 (52,2) ef	10,1 (70,6) e	
7. Contain ^{®2/}	800	3,0 b	11,5 a	20,8 a	12,5 b	9,0 a	0,0 (100,0) g	12,8 (62,6) e	
8. Contain [®]	1600	5,0 a	8,0 b	21,3 a	15,3 a	10,3 a	0,0 (100,0) g	12,3 (64,3) e	
9. Plateau ^{®3/}	140	3,0 b	3,5 c	8,5 b	6,5 c	5,0 b	5,8 (50,0) e	13,6 (60,4) e	
10. Sempra ^{®4/}	150	0,0 d	0,0 d	0,0 e	0,0 e	0,0 c	8,0 (34,4) bc	23,2 (32,3) bc	
11. Testemunha com tiririca		0,0 d	0,0 d	0,0 e	0,0 e	0,0 c	4,8 (58,7) f	12,2 (64,4) e	
12. Testemunha sem tiririca		0,0 d	0,0 d	0,0 e	0,0 e	0,0 c	11,5 a	34,3 a	
F		19,37*	20,42*	48,45*	42,72*	55,11*	93,37*	19,04*	
CV (%)		35,32	40,09	40,17	40,03	48,52	11,31	19,30	
DMS (5%)		1,07	2,22	3,35	2,34	1,54	0,98	5,08	

⁻ DAA = Dias Após Aplicação. pc = produto comercial; ^{1/2/} = imazapyr; ^{3/} = imazapic; ^{4/} = halosulfuron.

Tabela 2. Fitointoxicação, altura e matéria seca da parte aérea da grama bermuda (*C. dactylon*), e porcentagens de redução (valores de % entre parênteses) em relação à testemunha (Exp. 2). Umuarama-PR, 2011.

			Fite	ointoxicação	(%)		Desenvolvimen	to vegetativo
Tratamentos	mL ou g pc ha ⁻¹	7	14	28	35	49	Altumo (om)	M. Seca
	па	DAA	DAA	DAA	DAA	DAA	Altura (cm)	(g vaso ⁻¹)
1. Kapina®1/	750	0,0 c	0,0 g	0,0 d	0,0 c	0,0 c	10,3 (8,9) abc	20,8 (6,5) a
2. Kapina [®]	1500	0,0 c	0,0 g	0,0 d	0,0 c	0,0 c	10,0 (11,1) abc	19,4 (13,0) bcd
3. Kapina®	2250	4,0 ab	3,5 ef	0,0 d	0,0 c	0,0 c	9,8 (13,3) bcd	18,1 (18,8) d
4. Kapina Plus ^{®1/}	750	4,0 ab	1,5 fg	0,0 d	0,0 c	0,0 c	9,8 (13,3) bc	22,6 (-1,2) abcd
 Kapina Plus[®] 	1500	4,0 ab	5,7 de	0,0 d	0,0 c	0,0 c	10,8 (4,4) ab	22,4 (-0,3) abcd
6. Kapina Plus®	2250	5,0 a	8,5 c	5,3 c	3,5 c	1,5 c	9,3 (17,8) cd	19,6 (12,1) ab
7. Contain ^{®2/}	800	5,0 a	22,8 b	97,0 a	98,8 a	99,5 c	0,0 (100,0) f	6,4 (71,5) fg
8. Contain [®]	1600	3,0 b	28,3 a	100,0 a	100,0 a	100,0 a	0,0 (100,0) f	4,8 (78,7) g
9. Plateau ^{®3/}	140	4,0 a	6,5 cd	65,3 b	76,3 b	85,8 b	7,3 (35,6) e	8,2 (63,4) ef
10. Sempra ^{®4/}	150	0,0 c	0,0 g	0,0 d	0,0 c	0,0 c	11,0 (2,2) ab	19,3 (13,5) cd
Testemunha com tiririca		0,0 d	0,0 c	0,0 d	0,0 d	0,0 c	8,5 (24,4) de	9,7 (56,7) e
12. Testemunha sem tiririca		0,0 d	0,0 c	0,0 d	0,0 d	0,0 c	11,3 a	22,3 abc
F		36,57*	117,99*	889,96*	652,05*	1554,6*	73,84*	40,84*
CV (%)		27,06	25,61	11,43	13,32	8,65	11,31	13,19
DMS (5%)		1,03	2,58	4,01	4,87	3,26	1,32	3,06

⁻ DAA = Dias Após Aplicação. pc = produto comercial; 1/2/= imazapyr; 3/= imazapic; 4/= halosulfuron. *Médias na mesma coluna seguidas da mesma letra não diferem entre si, a 5% de probabilidade pelo teste LSD.

Com relação ao controle da espécie de tiririca *C. flavus*, a maioria dos tratamentos químicos somente começou a apresentar níveis satisfatórios (> 80,0%) aos 28 DAA (Tabela 3 e Figura 1). Para Kapina[®] e Kapina Plus[®], as

dosagens de 750 mL ha⁻¹, somente controlou satisfatoriamente a partir de 35 DAA, mas ainda sendo significativamente inferior aos demais tratamentos. Entretanto, apesar das diferenças significativas na dosagem de 750

^{*}Médias na mesma coluna seguidas da mesma letra não diferem entre si, a 5% de probabilidade pelo teste LSD.

mL ha⁻¹, aos 42 DAA os níveis de controle foram excelentes para ambas formulações. A quantidade de matéria seca de *C. flavus* também representou comportamento semelhante ao da eficiência de controle,

caracterizando as maiores quantidades e/ou menores níveis de redução apenas para dosagem de 750 mL ha⁻¹, das formulações Kapina[®] e Kapina Plus[®] (Tabela 4).

Figura 1. Fitointoxicação visual da grama esmeralda (esquerda) e bermuda (direita), e controle da tiririca *C. flavus* aos 28 DAA (experimento 1). Umuarama-PR, 2011.

Desta forma, é importante ressaltar, que a aplicação do experimento 1 foi realizada em estágio avançado da planta daninha (início de florescimento). Apesar de esta consideração ser fisiologicamente contrária à boa ação de herbicidas sistêmicos. resultados os evidenciaram que para a espécie C. flavus são desnecessárias dosagens superiores recomendada pelo fabricante (750,0 mL ha⁻¹), assim como do recobrimento errôneo da aplicação por mais de uma vez na mesma área, normalmente realizado em práticas de jardinagem amadora.

Para o controle da tiririca *C. rotundus* (experimento 2), caracterizou-se o excelente nível de controle para todas as formulações e dosagens dos herbicidas a partir dos 14 DAA, e eficácia máxima aos 28 DAA (Tabela 3 e

Figura 2). A maior precocidade da ação dos herbicidas tem relação direta com o estádio vegetativo mais adequado à referida espécie. Esses resultados indicam que Kapina® e Kapina Plus® proporcionam excelentes níveis de controle e ação relativamente rápida (14 DAA), desde que aplicado com *C. rotundus* em estágio precoce (≤ 8 folhas). Outros trabalhos, relatam resultados também semelhantes. evidenciando excelente controle de C. rotundus com os herbicidas Plateau® e/ou Sempra® (Mascarenhas et al., 1995; Bilton Van et al., 1996; Constantin & Maciel, 1999; Durigan et al., 2004, 2005), os quais no experimento 2 não diferiram significativamente das formulações Kapina[®] e Kapina Plus[®].

Tabela 3. Controle de C. flavus (Exp. 1) e C. rotundus (Exp. 2). Umuarama-PR, 2011.

		Controle (%) C. flavus (Exp. 1)					Controle (%) C. rotundus (Exp. 2)		
Tratamentos	mL ou g pc ha ⁻¹	14	21	28	35	49	7	14	28
		DAA	DAA	DAA	DAA	DAA	DAA	DAA	DAA
1. Kapina®1/	750	33,6 с	47,6 f	68,0 e	90,9 e	97,5 b	57,7 bc	94,3 a	100,0
2. Kapina®	1500	42,3 ab	60,1 cd	82,6 bcd	97,0 ab	99,5 a	60,0 abc	97,3 a	100,0
3. Kapina [®]	2250	42,5 ab	50,8 ef	83,8 bc	97,4 ab	100,0 a	59,3 abc	96,0 a	100,0
4. Kapina Plus ^{®2/}	750	25,9 d	56,1 de	67,6 e	86,8 f	97,8 b	64,3 abc	98,3 a	100,0
5. Kapina Plus®	1500	45,7 a	59,9 cd	76,3 d	93,8 d	99,8 a	69,3 ab	97,3 a	100,0
6. Kapina Plus®	2250	32,4 cd	63,5 c	80,1 cd	94,6 cd	100,0 a	69,7 ab	98,0 a	100,0
7. Contain ^{®2/}	800	36,6 bc	76,1 ab	88,8 ab	98,5 ab	100,0 a	-	-	-
8. Contain [®]	1600	33,3 c	82,8 a	93,6 a	98,8 a	100,0 a	-	-	-
9. Plateau ^{®3/}	140	36,4 bc	70,9 b	89,4 ab	97,8 ab	99,8 a	73,7 a	97,0 a	100,0
10. Sempra ^{®4/}	150	35,4 c	75,5 ab	86,9 abc	96,5 bc	99,5 a	52,7 c	89,3 b	100,0
Testemunha com tiri	rica	0,0 e	0,0 g	0,0 f	0,0 g	0,0 c	0,0 d	0,0 c	0,0
12. Testemunha sem tiri	irica	-	-	-	-	-	-	-	-
F		29,32*	78,18*	110,75*	1520,6*	3993,6*	18,66*	421,94*	-
CV (%)		13,70	8,63	6,66	1,71	1,05	15,77	3,17	-
DMS (5%)		6,55	7,29	7,14	2,14	1,37	15,36	4,85	-

⁻ DAA = Dias Após Aplicação. pc = produto comercial; ^{1/2/}= imazapyr; ^{3/}= imazapic; ^{4/}= halosulfuron. *Médias na mesma coluna seguidas da mesma letra não diferem entre si, a 5% de probabilidade pelo teste LSD.

Figura 2. Controle da tiririca *C. rotundus* aos 7 e 28 DAA utilizando os herbicidas Kapina[®] (tratamentos T1, T2, T3), Kapina Plus[®] (tratamentos T6, T7, T8), Plateau[®] (T7) e Sempra[®] (T8) (experimento 2). Umuarama-PR, 2011.

Tabela 4. Matéria seca da parte aérea da tiririca (*Cyperus flavus*) para as gramas esmeralda (A) e bermudas (B), e porcentagem de redução (%RMS) em relação à testemunha sem aplicação aos 49 DAA (Experimento 1). UEM/CAU/Umuarama - PR, 2011.

T44	Dosagens	Matéria Seca (g vaso ⁻¹) - 49 DAA							
Tratamentos	pc ha ⁻¹	C. flavus (A)	%RMS	C. flavus (B)	%RMS				
1. Kapina ^{®1/}	750	4,6 b	66,7	9,9 b	66,9				
2. Kapina [®]	1500	2,8 bc	79,8	7,3 cd	75,6				
3. Kapina®	2250	1,7 c	87,5	7,0 cd	76,4				
4. Kapina Plus ^{®2/}	750	3,1 bc	77,9	8,8 bc	70,3				
5. Kapina Plus®	1500	2,5 c	82,0	7,1 cd	76,0				
6. Kapina Plus®	2250	1,4 c	90,1	7,7 bcd	74,2				
7. Contain ^{®2/}	800	2,4 c	82,5	5,3 d	82,1				
8. Contain®	1600	2,0 c	85,3	5,6 d	81,1				
9. Plateau ^{®3/}	140	2,2 c	84,3	5,3 d	82,2				
10. Sempra ^{®4/}	150	2,1 c	85,2	2,5 e	91,6				
11. Testemunha com tiririca		13,8 a	-	29,8 a	_				
12. Testemunha sem tiririca		-	-	-	-				
F		27,89*	-	70,56*	-				
CV (%)		38,15	-	19,70	-				
DMS (5%)		1,93	-	2,49	-				

⁻ DAA = Dias Após Aplicação. pc = produto comercial; 1/2/= imazapyr; 3/= imazapic; 4/= halosulfuron. *Médias na mesma coluna seguidas da mesma letra não diferem entre si, a 5% de probabilidade pelo teste LSD.

Conclusões

Os herbicidas Kapina® e Kapina Plus®, a partir de 750,0 mL ha⁻¹, apresentaram excelente controle de *C. flavus* e *C. rotundus*; assim como seletividade satisfatória para as gramas esmeralda (*Z. japonica*) e bermuda (*C. dactylon*). Kapina Plus®, a partir de 750,0 mL ha⁻¹, além da ação herbicida, também apresentou viabilidade como regulador de crescimento e desenvolvimento vegetativo da grama esmeralda, podendo reduzir o número de cortes do gramado.

Agradecimentos

A empresa Rawell Química Ltda - ME pelo incentivo, financiamento do projeto e permissão da divulgação total das informações.

Referências

BILTON VAN, J. J.; HUGO, K. J.; MERWE VANDER, C. J. Post-emergency control of *Cyperus esculentus* and *Cyperus rotundus* in maize with halosulfuron. **Applied Plant Science**, v.10, n.2, p.52-54, 1996.

CAVALIERI, S. D. et al. Uso do herbicida imazapic como regulador de crescimento de grama esmeralda (*Zoysia japonica*). In: Congresso Brasileiro da Ciência das Plantas Daninhas, 27, 2010, Ribeirão Preto, **Resumos...**, Ribeirão Preto: SBCPD, 2010(a). (CD-ROM).

CAVALIERI, S. D. et al. Supressão do crescimento de grama esmeralda (*Zoysia japonica*) sob efeito residual do herbicida imazapic aplicado em sub-doses com e sem a presença de adjuvante. In: Simpósio Internacional Sobre Gramados, 5, 2010, Botucatu, **Resumos...**, Botucatu: FEPAF/FCA, 2010(b). (CD-ROM).

CHRISTOFFOLETI, P. J.; ARANDA, A. N. Seletividade de herbicidas a cinco tipos de gramas. **Planta Daninha**, v. 19, n. 2, p. 273-278, 2001.

CONSTANTIN, J.; MACIEL, C. D. G. Avaliação da eficiência agronômica e seletividade do herbicida halosulfuron no controle de tiririca (*Cyperus rotundus*) na cultura da cana-de-açúcar (*Saccharum* spp.). **Pesticidas: Revista de Ecotoxicologia e Meio Ambiente**, v.9, p. 45-64, 1999.

COSTA, N. V. et al. Seletividade de herbicidas aplicados nas gramas santo agostinho e esmeralda. **Planta Daninha**, v. 28, n. 1, p. 139-148, 2010.

DEUBER, R. Manejo de plantas daninhas em áreas não agrícolas. In: **Ciência das Plantas Infestantes**: manejo. Campinas: Edição do autor, v. 2, 1997. p. 273-275.

DURIGAN, J. C.; TIMOSSI, P. C.; LEITE, G. J. Controle químico da tiririca (*Cyperus rotundus*), com e sem cobertura do solo pela palha de cana-de-açúcar. **Planta Daninha**, v.22, n.1, p.127-135, 2004.

DURIGAN, J. C. et al. Eficácia do herbicida halosulfuron para o controle da tiririca (*Cyperus rotundus* L.) e seletividade às plantas de cana-de-açúcar (*Saccharum* spp.). **Científica**, v.33, n.2, p.134-141, 2005.

KAUFMANN, J.E. Growth regulators for turf. **Grounds Maintance**, v.21, n.5, p.72, 1986.

MACIEL, C. D. G. et al. Composição florística da comunidade infestante em gramados de *Paspalum notatum* no município de Assis, SP. **Planta Daninha**, v.26, n.1, p.57-64, 2008.

MACIEL, C. D. G. Resultados de pesquisa com herbicidas em gramados - um apelo para o registro de produtos. In: Simpósio sobre gramados: tópicos atuais em gramados II. Eds. GODOY, L. J. G. et al. Botucatu: FCA, UNESP, 2010. p.115-134.

MACIEL, C. D. G. et al. Desenvolvimento de gramados submetidos à aplicação de retardadores de crescimento em diferentes condições de luminosidade. **Planta Daninha**, v. 29, n. 2, p. 383-395, 2011.

MASCARENHAS, M. H. T. et al. Eficácia do halosufuron no controle de tiririca (*Cyperus rotuns* L.) na cultura da cana-de-açúcar. **Planta daninha**, v. 13, n.2, p.69-80, 1995.

McELROY, J. S.; MARTINS, D. Use of herbicides on turfgrass. **Planta daninha**, v.31, n.2, p. 455-4672013.

SBCPD - Sociedade Brasileira da Ciência das Plantas Daninhas. **Procedimentos para instalação, avaliação e análise de experimentos com herbicidas**. 1ª ed. Londrina: SBCPD, 1995. 42p.

